Thursday 31 October 2019

Systematic Guideline for Safety Assessment based on Process Information


Written by: Muhammad Firdaus Husin

In chemical engineering, one of the targets of the process design is the creation or modification of flow diagrams capable of manufacturing the desired chemical. It is also essential to consider safety aspects when designing any new process or in the case of retrofitting. As a result, several methods have been introduced for safety assessment during process design phase [1]. To date, there are lacks of guideline in selecting an appropriate method for him/her based data availability, target of assessment and budget constraints. To fill in this gap, a heuristic framework are designed for assisting users in conducting safety assessment during chemical process design.






Figure 1 shows a summary of designing framework for process safety assessment in chemical process design methods and their strategies for minimization of hazards or risks which are based on inherent safer design (ISD) keywords [2]. For all methods, the calculated index or risk values and hazards will be compared with the respective benchmark. If the value of calculated index or risk is not acceptable, four ISD keywords (minimization, substitution, moderation and simplification) are taken-over to reduce or eliminate the hazard as much as possible. Finally, the re-assessment of hazards can be performed until the index values and all hazards are at acceptable range. The frameworks shall serve as a great help for engineers to select appropriate method for safety assessment based on the availability of process information during the chemical process design. Instead of assessing the safety level of process design phase, this framework can also be used to analyse the root of the safety problems and recommend the possible solutions.

References
 [1] Khan, F. I. and Abbasi, S. A. (1998c). Techniques and methodologies for risk analysis in chemical process industries. Journal of Loss Prevention in the Process Industries, 11(4), 261-277.
[2] Kletz, T. A. (1991). Plant Design for Safety : User-friendly Approach.

Pulsed lasers: Q-switched and Mode-locked techniques

Written by: Dr Baktiar Musa, Suziana Omar, Ir. Dr. Zulzilawati Jusoh and Norizan Ahmed

This article tries to explain about our research on Q-switched and mode-locked lasers. We begin with the definition of laser first, LASER is actually an acronym for Light Amplification by Stimulated Emission of Radiation. Historically, the first laser was realized in 1960 at Hughes Research Laboratories by Theodore H. Maiman following the theoretical work by Charles Hard Townes and Arthur Leonard Schawlow [1].
In order to understand how pulsed lasers work, we need to revisit our fundamental knowledge in physics. But explaining all those fundamentals can be tiresome, so here we just focused on differentiating pulsed laser and continuous wave (CW). CW refers to a laser that is continuously pumped and continuously emits light. The emission can occur in a single resonator mode or on multiple modes. An example of CW laser is CO2, where initially the gas is ionized to the threshold level and then by using pulse width modulation (PWM), the laser output can be controlled. For comparison, CO2 molecules readily lase at 10.6 µm, while neodymium-based crystals (like YAG or vanadate) produce wavelengths in the range between 1047 and 1064 nm. Each laser wavelength is associated with a linewidth, which depends on several factors: the gain bandwidth of the lasing medium and the design of the optical resonator [2]. On the other hand, a pulsed laser operates in such a way that all of its energy is dumped out in a single pulse which normally lasts from picoseconds to few nanoseconds. After that the laser output goes to zero. Again, the pulse appears at the output. This switching is done by Q switch.
Two commonly used techniques employed in producing pulsed lasers are Q-switching and mode-locking. A Q-switched laser is a laser to which the technique of active or passive Q switching is applied, so that it emits energetic pulses [3]. Typical applications of such lasers are material processing (e.g. cutting, drilling, laser marking), pumping nonlinear frequency conversion devices, range finding, and remote sensing. Q-switching technique allows the production of light pulses with extremely high (gigawatt) peak power, much higher than would be produced by the same laser if it were operating in a CW mode. Using mode-locking technique, the laser output will be pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). Here, the laser resonator contains some kind of mode locking device – either an active element (an optical modulator) or a nonlinear passive element (a saturable absorber), which causes the formation of an ultrashort pulse circulating in the laser resonator [4]. In terms of repetition rates and pulsed durations, Q-switched lasers showed lower values compared to ones produced by using mode-locking technique.  Depending on the applications, sometimes the techniques are used together to produce pulsed lasers.
For generation of pulsed laser, a passive mode-lockers are preferred due to their simpler configuration and thus far, a variety type of saturable absorber (SA) have been proposed [3-6]. Our research focused on finding and exploring new materials that are suitable as saturable absorbers. Previously, carbon materials such as carbon nanotubes (CNTs) and graphene show promising performances as saturable absorber to achieve mode-locking in fiber lasers [5, 6]. It offers characteristics such as ultrafast recovery time and capable to achieve broadband operation. Recently, numerous novel 2D materials such as topological insulators [8,9], transition metal dichalcogenide (TMD), black phosphorus, MXene, bismuthene, metal-organic frame-works, and perovskite have demonstrated broad-band optical nonlinearities [7]. The properties of these saturable absorbers will be discussed in the next article.
1.     https://en.wikipedia.org/wiki/Laser
2.     https://www.photonics.com/Articles/Lasers_Understanding_the_Basics/a25161
3.     https://www.rp-photonics.com/q_switched_lasers.html
4.     https://www.rp-photonics.com/mode_locking.html
5.     Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H, Cai Z, Lin Z, Sun L and Weng J.  IEEE Journal of Selected Topics in Quantum Electronics 20 1-8 (2014)
6.     Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y.  Advanced Functional Materials 19 3077-83 (2009)
Li, L., Lv, R., Chen, Z. et al. Nanoscale Res Lett 14, 59 (2019)

Colour Development of Green Coffee Bean during Batch Roasting in Fluidized Bed Roaster



(By: Mohamad Taib Miskon & Nurul ‘Uyun Ahmad)

“While enjoying a cup of an aromatic, astonishing, hot and refreshing coffee drink.”

Roasting has been one of the most important step in a coffee production as it transforms the tasteless green coffee bean into a delicious cup of Joe. It is an act of introducing an amount of heat to a batch of green coffee bean to trigger complex chemical reaction
[1] as well as colour and physical change [2]. There are various types of coffee roasting methods such as using the traditional hot pan, drum roaster and fluidized bed or hot air roaster.
This article presented the colour development of green Ethiopian coffee bean during roasting in a Fresh Roast SR500 coffee roaster with Artisan Roaster Scope. Figure 1.0 depicted the colour changes of the bean over temperature progression during the roasting process. The process took about 15 minutes and it can be divided into six key stages;
Stage 1: Drying (at minutes: 0 – 2.15)
The roasting process started with the bean temperature at 33°C and it endured the drying phase for about 2.15 minutes as the beans’ colour changed from green to yellow. During this stage, the beans were absorbing heat from the hot air or also known as an endothermic process. 
Stage 2: Yellowing (at minutes: 2.15 – 6.33)
At this stage, more water was removed from the bean and the bean colour was changing from yellow to brown. The size of the bean was also expanding rapidly due to the build-up of gas pressure inside the bean [3].
Stage 3: First Crack (at minutes: 6.33 minutes)
The first crack was determined by the audible popping sound, indicating the beginning of the beans’ exothermic reaction.
Stage 4: Roast development (at minutes: 6.33-9.09)
At this stage, the beans’ flavour and sweetness started to develop [4] and the process continued for about 3 minutes.
Stage 5: Second Crack (at minutes: 9.27)
The second crack occurred at minutes of 9.27 and the heater was turned off shortly after to allow the execution of the cooling phase.
At this stage, the bean experienced the second crack whereby the oil’s bean were encapsulated to the surface of the bean. The bean produced was less acidic, smoky yet aromatic, and the authentic flavour has developed.
Stage 6: Cooling (at minutes: 9.36-15.00)
The bean must be cooled quickly to stop the roasting process.

[1]       A. N. Gloess et al., “Evidence of Different Flavour Formation Dynamics By Roasting Coffee From Different Origins: On-Line Analysis With PTR-ToF-MS,” Int. J. Mass Spectrom., vol. 365–366, pp. 324–337, 2014.
[2]       J. Daniel Bustos-Vanegas et al., “Developing Predictive Models For Determining Physical Properties of Coffee Beans During The Roasting Process Kinetic Charcoal Cooling: Computer Simulation and Technological Applications View Project Harvest Process View Project Developing Predictive Models For Determining Physical Properties Of Coffee Beans During The Roasting Process,” Ind. Crop. Prod., vol. 112, pp. 839–845, 2018.
[3]       R. Eggers and A. Pietsch, “Technology I: Roasting,” Coffee Recent Dev., pp. 90–107, 2008.
[4]       L. Poisson, I. Blank, A. Dunkel, and T. Hofmann, The Chemistry of Roasting-Decoding Flavor Formation. Elsevier Inc., 2017.


Super Robot



Disediakan oleh Siti Aishah Che Kar

Ketika awal zaman awal 90-an, ketika kami masih lagi anak-anak sekolah, banyak nostalgia kenangan antaranya mesin air kotak atau air tin. Gembira dapat masukkan duit syiling dan tekan pilihan air terus keluar setin air bunga kekwa dari mesin tersebut. Mesin gedegang kami gelar sempena bunyinya yang kuat bila air tin jatuh di tempatnya. Dan masih terbayang gembiranya kami kalau dibawa berjalan ke Supermarket Hanku Jaya atau The Store di bandar Kota Bharu, Kelantan kerana dapatlah merasa naik tangga bergerak atau eskalator. Berdebar-debar pijak tangga takut tersepit kaki di celah-celah tangga bergerak. Jika ada saudara yang ingin diziarahi oleh ayah dan mak di Hospital Kubang Kerian (HSUM), Kelantan, kami berebut untuk ikut. Bagaimana kami anak-anak tidak sabar untuk berumur 12 tahun ke atas. Sebabnya apa kerana hanya kanak-kanak yang berumur 12 tahun ke atas dibenarkan masuk ke ruang wad yang ditempatkan di puluhan tingkat hospital tersebut. Sudah pasti kami teruja kerana di hospital itulah terdapat lif. Bukan senang nak jumpa dan merasa naik lif.
Kini memasuki tahun 2020 semuanyan makin berubah pantas. Lif, tangga bergerak dan juga mesin air kotak bukan lagi pengalaman agung bagi anak-anak. Mungkin kita belum lagi dapat melihat kereta terbang di atas atap rumah atau pokok tapi perubahan besar memang telah berlaku malah amat pantas bergerak. Jika dulu kita mimpikan sebuah mesin atau robot yang mampu mengalih semua kerja, namun siapa sangka super robot impian itu datang dalam bentuk sebuah telefon. Ya hanya dengan sebijik telefon pintar, kini pelbagai dapat dilakukan.  Jam tangan, penggera, kalendar, diari, kalkulator, album gambar, kamera, lampu suluh, peta, kompas, dan namakan apa saja apa sahaja produk boleh kini dengan hanya menggunakan telefon pintar. Malah juga perbagai urusan harian telah diambil-alih oleh penggunaan telefon pintar seperti, urusan perbankan. Kita juga tidak perlu lagi sebuah gedung membeli belah, restoran, bank dan kedai buku. Ruangan meja kopi apatah lagi dengan rangkaian media sosial yang berselirat. Jika dulu mesin hanya mengambil tugas-tugas mudah kini tugas professional seperti doktor, guru, pensyarah, akauntan juga boleh ambil alih oleh pengunaan teknologi. Jika dulu pusat pengajian tinggi diibaratkan syurga ilmu pengetahuan dan kemahiran, kini ia perlu difikirkan kembali kerana kini gedung ilmu yang terbesar hanya berada dihujung jari sahaja dengan kos yang lebih murah dan mudah untuk dicapai.
Impaian kita untuk memiliki sebuah alat yang dapat menyelesaikan semua tugas hampir tertunai. Kita hanya perlu memiliki telefon pintar , semua masalah dapat diselesaikan. Namun kebergantungan terhadap hanya sebuah alat akhirnya pasti secara tidak langsung akan menjerat manusia juga. Secara perlahan-lahan semua jualan produk oleh syarikat kecil diambil alih oleh syarikat multi-gergasi seperti Google, Facebook, Amazon. Kebergantungan kita kepada syarikat gergasi ini bagi menyelesaikan semua masalah kita pasti amat bahaya.  Jika dulu hanya pekerjaan sokongan seperti pengkeranian, yang perlu bersaing dengan penggunaan mesin, kini pekerjaan bidang professional seperti guru, pensyarah, doktor dan juga jurutera juga akan juga turut terkena tempias perlu bersaing dengan pengunaan teknologi.
Mungkin seperti yang gambarkan dalam filem animasi WALL-E keluaran Walt Disney dan Pixar dimana semua manusia pada zaman tersebut hanya bergantung kepada satu robot iaitu AUTO untuk menguruskan semua aktiviti harian mereka. Mereka hanya berbaring di atas kerusi malas dan tidak bergerak langsung hingga hilang keupayaan diri termasuk untuk berjalan. Malah watak manusia dalam filem tersebut hanya sebagai pelakon “extra” manakala watak utama semua didonamasi oleh robot dan sebuah megasyarikat bernama B n L. Klise sungguh.
Pasti dalam masa yang akan datang perubahan akan terus mendatangi kita kerana kita jugalah yang menciptakanya dan menyerunya. Berubah atau tidak kita hanya ada satu pilihan…

Wednesday 30 October 2019

Istiadat Konvokesyen UiTM Cawangan Terengganu ke-91




Disediakan oleh Siti Aishah Che Kar

Pada 30 hingga 31 Oktober 2019 yang lalu telah berlangsung istiadat Konvokesyen yang ke-91 bagi UiTM Cawangan Terengganu bertempat di Dewan Aspirasi, UiTM Cawangan Terengganu Kampus Dungun. Terdapat empat sesi sidang yang berlangsung pada kedua-dua hari tersebut di mana sesi sidang petang pada 30 Oktober 2019 melibatkan lepasan pelajar diploma dari Fakulti Kejuruteraan Elektrik (FKE) kampus Dungun, Terengganu.

Seramai 249 orang graduan dari FKE yang telah diraikan dalam majlis tersebut yang terdiri daripada 25 orang graduan daripada Diploma Kejuruteran Elektrik (Kawalan & Instrumentasi), 130 orang graduan dari Diploma Kejuruteran Elektrik (Elektronik) dan seramai 94 orang graduan dari Diploma Kejuruteran Elektrik (Kuasa). Majoriti graduan yang diraikan pada sesi kali ini adalah pelajar kemasukan sesi 1 2016/2017. Manakala seramai 19 orang pensyarah FKE hadir dalam sesi tersebut bagi meraikan kejayaan semua graduan terbabit.

Konvoskeyen kali ini juga mencatatkan sejarah manis kepada FKE kerana seorang pelajar dari FKE, Siti Nurul Amirah Afrina binti Sheikh Mohd Rosdi telah dianugerahkan dua anugerah pencapaian akademik iaitu Anugerah Graduan Terbaik Fakulti Kejuruteraan Elektrik dan Anugerah Graduan Terbaik Program bagi program Diploma Kejuruteraan Elektrik (Kuasa) manakala seorang lepasan diploma dari FKE, UiTM Terengganu Ahmad Syakirin bin Ismail@Rosdi telah dianugerahkan Anugerah Kedoktoran Tuanku Canselor dalam konvokesyen yang berlangsung di UiTM Shah Alam. Beliau merupakan pelajar lepasan diploma dari FKE, UiTM Terengganu seterusnya menyampung pengajian hingga ke peringkat Doktor Falsafah di FKE, UiTM Shah Alam
Tahniah pada semua pelajar, para pensyarah, staf sokongan dan ibu bapa serta keluarga pelajar di atas kejayaan ini. Semoga kejayaan ini dapat memberi inspirasi dan FKE terus akan menempa kejayaan yang lebih manis dengan kerjasama dan dukungan semua pihak.
Sekalung Tahniah….

Overview of Protein Structure Prediction


 Written by: Fatahiya Mohamed Tap

Based on structural perspective, protein is an ordered structure of the unique linear chain of amino acids.  The tertiary structure of protein is represented by the distribution of secondary structures.  The secondary structure is defined by the presence of hydrogen bond patterns between hydrogen atoms of the amino acid and the oxygen atom of the carboxyl groups in the polypeptide chain.  The functional properties of the protein can be determined from the known tertiary structure of the protein.  Thus, the generation of this tertiary structure is vital in understanding the functional and structural properties of a protein.
Structural bioinformatics is an important area in the field of computational biology.  It focuses on the prediction and analyses of structures which are mainly protein and DNA [1]  Conventionally, the tertiary structure information of protein is obtained through experimental methods such as protein crystallography (X-ray diffraction), and nuclear magnetic resonance (NMR).  The structures obtained from these methods can be further used to investigate the protein folds, evolution, and structure-function relationship.
However, the determination of protein structure through experimental approach is expensive and time-consuming [1].  The difficulty in finding the structure of a protein has generated a large gap between the number of sequences of amino acids and the number of tertiary structures of proteins.  Only a small number of amino acid sequences have their tertiary structures solved using the experimental method.  Thus, this gap motivated the researchers to predict the tertiary structure of proteins using computational approaches [2].  Computational approaches are fast and non-expensive compared to the experimental approaches.  Thus, several computational methods have been developed in order to predict the tertiary structure of proteins.  These methods are:

i           Homology modelling/Comparative modelling
ii          Fold recognition
iii         Ab initio

The threading and comparative modelling methods are the fastest and effective approaches in predicting the structure of protein because these two methods are based on known template structures with the availability of fold library [3], [4].  These methods can predict the tertiary structures of proteins with high accuracy. The models can be applied in the field of drug design, virtual screening and site-directed mutagenesis [5].

References
[1]       M. Dorn, M. B. e Silva, L. S. Buriol, and L. C. Lamb, “Three-dimensional protein structure prediction: Methods and computational strategies,” Comput. Biol. Chem., vol. 53, no. Part B, pp. 251–276, 2014.
[2]       H. Deng, Y. Jia, and Y. Zhang, “Protein structure prediction,” Int. J. Mod. physics. B, vol. 32, no. 18, p. 1840009, Jul. 2018.
[3]       V. K. Vyas, R. D. Ukawala, M. Ghate, and C. Chintha, “Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives,” Indian J. Pharm. Sci., vol. 74, no. 1, pp. 1–17, Jun. 2012.
[4]       S. D. Lam, S. Das, I. Sillitoe, and C. Orengo, “An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences,” Acta Crystallogr. Sect. D, Struct. Biol., vol. 73, no. Pt 8, pp. 628–640, Aug. 2017.

[5]       T. Schmidt, A. Bergner, and T. Schwede, “Modelling three-dimensional protein structures for applications in drug design,” Drug Discov. Today, vol. 19, no. 7, pp. 890–897, Jul. 2014.

WHAT ARE THE COMPONENTS INSIDE FERTILIZER?




Written by Shaiful Bakhtiar Hashim, Norhidayatul Hikmee Mahzan, Dr Sukreen Hana Herman, Dr Zurita Zulkifli.

Agriculture is an important sector in Malaysia. For many years, this sector has been the backbone of Malaysian economy by producing agricultural products for domestic consumption, as the earner of foreign exchange. Agriculture also contributes to the national Gross Domestic Products (GDP). It provides major employment for the people, especially from the rural areas.

Fertilizer is a component applied to the soil or plant in order to add more plant nutrients essential for growth of the plant. The good productivity of crops is directly dependent on soil fertility. Basically, Nitrogen (N), phosphorus (P) and potassium (K) are the macronutrients present in all fertilizers and represent the most important nutrients in agriculture. N, P and K elements in fertilizer is a complex comprised primarily of the [i]three primary nutrients which is required for healthy plant growth.

These three elements nutrients promote the growth of the plant in different ways which N promotes the growth of leaves and vegetation, P promotes root and growth and K promotes flowering, fruiting and keeps regulation of nutrient and water in plant cell. To improve the quality and quantity of crops and to get a good crop, one of the important things that the land or soil has is an adequate fertilizer and also contain sufficient nutrients.

Soils that lack of these three nutrients, either naturally or because of cultivation will affect the plant growth. In cases where soils are lacking, nutrients must be put back into the soil in order to create the ideal environment for optimal plant growth. Each of the primary nutrients is essential in plant nutrition, serving a critical role in the growth, development, and reproduction of the plant.

In agricultural technology, a variety of tools have been created to help farmers make their agricultural activities and get a good crop. Previous researchers have developed detection of N, P and K devices in soil from various methods, including optical, acoustic, electrical and electromagnetic, mechanical and electrochemical [1-3].


References

[1]    M. Y. Kulkarni, K. K. Warhade, and S. Bahekar, “Primary Nutrients Determination in the Soil Using UV Spectroscopy,” Int. J. Emerg. Eng. Res. Technol., vol. 2, no. 2, pp. 198–204, 2014.

[2]    M. Joly, L. Mazenq, M. Marlet, P. Temple-Boyer, C. Durieu, and J. Launay, “All-solid-state multimodal probe based on ISFET electrochemical microsensors for in-situ soil nutrients monitoring in agriculture,” TRANSDUCERS 2017 - 19th Int. Conf. Solid-State Sensors, Actuators Microsystems, vol. 1, no. 10, pp. 222–225, 2017.
[3]    M. A. Ali, K. Mondal, Y. Wang, N. K. Mahal, M. J. Castellano, and L. Dong, “Microfluidic detection of soil nitrate ions using novel electrochemical foam electrode,” Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp. 482–485, 2017.







STEM @ UiTM TERENGGANU




Disediakan oleh: Norhidayatul Hikmee Mahzan, Shaiful Bakhtiar Hashim, Dr. Baktiar Musa, Nurul ‘Uyun Ahmad, Norizan Mohamad, Mohd Fadzli Ismail dan Mohamad Taib Miskon.

Perkataan STEM adalah berasal daripada singkatan SMET iaitu Sains, Matematik, Kejuruteraan dan Teknologi. Kemudian, National Science Foundation (NSF) meringkaskan pula kepada STEM (Sains, Teknologi, Kejuruteraan dan Matematik) bagi memudahkan penyebutan dan memantapkan maknanya bagi setiap elemen.

Di UiTM Cawangan Terengganu, unit STEM diketuai oleh Dr Baktiar Musa sebagai Penyelaras dan dibantu oleh Norhidayatul Hikmee Mahzan, Shaiful Bakhtiar Hashim, Nurul ‘Uyun Ahmad, Norizan Mohamad, dan Mohamad Taib Miskon sebagai Fasilitator yang terdiri daripada pensyarah-pensyarah bagi ketiga-tiga kampus (Dungun, Bukit Besi dan Chendering). Terdapat juga mentor mentee dari kalangan pelajar-pelajar dari ketiga-tiga kampus bagi membantu program-program dibawah unit STEM ini.

Terdapat banyak program-program yang telah dijalankan dibawah unit STEM ini. Sebagai permulaannya ialah dengan menghantar seramai 5 orang pelajar dari Fakulti Kejuruteraan Elektrik ke Petrosains untuk menghadiri bengkel “Design Thinking Innovation Bootcamp” pada 30/01/2018 - 01/02/2018. Pelajar-pelajar ini akan dilatih dengan pelbagai kemahiran berfikir dan juga kemahiran menyelesaikan masalah. Setelah selesai menghadiri bengkel ini, 5 orang pelajar ini akan melatih rakan-rakan lain dalam program “Training of Trainer (ToT)” bagi mewujudkan satu kumpulan pelajar yang besar untuk unit STEM di UiTM Cawangan Terengganu.

Antara program-program lain yang telah dilaksanakan dibawah unit STEM adalah seperti berikut:

School Bootcamp for RBTX 2018 Challenge
Training of Trainer for STEM Rangers
Petrosains RBTX 2018 Challenge (Qualification Zone)
Bengkel Arduino di SMK Teja Putra
Petrosains RBTX 2018 Challenge (Grand Final)
Program STEM di SMK Paka
Hari Kokurikulum dan STEM 2019 di SMK Balai Besar
Program STEM FKK Bukit Besi Bersama SMK Bukit Besi
Jalinan Kerjasama (bidang Matematik) bersama SM Sains Dungun
Program STEM FKM Bukit Besi Bersama SMK Kompleks Rantau Abang

Program yang terbesar dibawah unit STEM adalah “Hari Mentor Mentee @ UiTMCT” dimana program ini melibatkan kerjasama antara Jabatan Pendidikan Negeri Terengganu, UiTM Cawangan Terangganu dan juga 9 buah sekolah yang merupakan sekolah angkat UiTM Cawangan Terengganu. Program ini telah dilaksanakan di Dewan Aspirasi, UiTM Kampus Dungun. Selain daripada itu juga, STEM UiTM Cawangan Terengganu juga terlibat dalam menjayakan program “Minggu Sains Negara” yang telah dianjurkan oleh pihak Pusat Sains Kreativiti Terengganu (PSKT) selama 2 tahun berturut-turut.

Program-program yang telah dijalankan dibawah unit STEM ini adalah untuk memupuk minat dikalangan pelajar-pelajar sekolah dalam Sains, Teknologi, Kejuruteraan dan Matematik.